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Abstract. We propose an improved algorithm for unconstrained global optimization in the
framework of the Moore–Skelboe algorithm of interval analysis (H. Ratschek and J. Ro-
kne, New computer methods for global optimization, Wiley, New York, 1988). The proposed

algorithm is an improvement over the one recently proposed in P.S.V. Nataraj and
K. Kotecha, (J. Global Optimization, 24 (2002) 417). A novel and powerful feature of the
proposed algorithm is that it uses a variety of inclusion function forms for the objective

function – the simple natural inclusion, the Taylor model (M. Berz and G. Hoffstatter,
Reliable Computing, 4 (1998) 83), and the combined Taylor–Bernstein form (P.S.V. Nataraj
and K. Kotecha, Reliable Computing, in press). Several improvements are also proposed for

the combined Taylor–Bernstein form. The performance of the proposed algorithm is
numerically tested and compared with those of existing algorithms on 11 benchmark exam-
ples. The results of the tests show the proposed algorithm to be overall considerably superior
to the rest, in terms of the various performance metrics chosen for comparison.

1. Introduction

Let < be the set of reals, X � <l be a right parallelepiped parallel to the
axes (also called as a box), and let �fðXÞ denote the set of all values of an
arbitrary function f : X! < on X. Let IðXÞ be the set of all boxes con-
tained in X. Let the width of an interval X be defined as
wðXÞ :¼ max X�min X if X 2 Ið<Þ, and as wðXÞ :¼ maxfwðX1Þ; . . . ;w
ðXlÞg, if X 2 Ið<lÞ.

DEFINITION 1.1 [23]. A function F : IðXÞ ! Ið<Þ is said to be an inclusion
function for f, if

�fðYÞ � FðYÞ for all Y 2 IðXÞ:

DEFINITION 1.2 [23]. An inclusion function F for f is said to have con-
vergence order a, if

wðFðYÞÞ � wð �fðYÞÞOLwðYÞa for all Y 2 IðXÞ;

where L and a are some positive constants.
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We consider the global optimization problem of determining arbitrarily
good lower bounds for the minimum of �fðXÞ. Many algorithms based on
interval analysis (IA) are available to solve the global optimization prob-
lem (see, e.g. [8, 11, 24] and the references cited therein). IA methods are
usually based on branch and bound techniques, i.e. they start from an ini-
tial box X, subdivide X and store the subboxes in a list, discarding sub-
boxes which are guaranteed not to contain a global minimizer until the
desired accuracy in terms of the width of the intervals in the list is
achieved. A basic branch and bound algorithm of IA is the so-called
Moore–Skelboe (MS) algorithm [24]. Although MS algorithm is reliable, it
is usually somewhat slow to converge in ‘difficult’ problems, when inclu-
sion functions of first and sometimes even second orders are used for the
objective function f. Faster convergence could possibly be obtained with
inclusion functions of order a > 2 (which we shall refer to as higher-order
inclusion functions).
Recently, an interval global optimization algorithm TBMS based on a

higher-order inclusion function was proposed [20]. Algorithm TBMS uses
the improved Taylor–Bernstein (TB) form FTB as a higher-order inclusion
function. FTB is constructed using Bernstein polynomials for bounding the
range of the polynomial obtained from the Taylor form of f. In order to
make it more effective in practice, FTB is constructed differently from that
of Lin and Rokne’s (LR) TB form FLR [13]. Performance comparisons
between algorithms MS (based on the natural inclusion function), TMS
(based on the Taylor model [2] as inclusion function), and TBMS show
TBMS algorithm to be the most effective one in terms of iterations, space-
complexity, and speed.
On the other hand, in typical interval global optimization applications,

the algorithm starts with a large initial domain, and reduces it eventually
to small enough solution boxes through domain splitting or subdivision
techniques. However, in such cases it may become difficult to compute
FLR and FTB over the entire range of domain widths, because of large
memory and/or time requirements. An appropriate combination of FLR

and FTB, called the combined TB form FCTB, can be useful in these situa-
tions [21]. Numerical tests reported in [21] showed the combined form
FCTB to be more effective than either FLR or FTB over the entire range of
domain widths. These tests also revealed another finding: the simple natu-
ral inclusion form can sometimes produce much tighter range enclosures
than the sophisticated Taylor and TB forms, even for small domain
widths [21].
Motivated by these recent findings, in this paper we present an improved

interval global algorithm using higher-order inclusion function forms. The
proposed algorithm improves upon the existing TBMS algorithm [20] in
the following ways:
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� It uses a variety of inclusion function forms for computing the range
enclosure of objective function f:

– the simple natural inclusion form [17],
– the Taylor model [2], and
– the combined TB form [21] (the form is actually modified and used to
produce possibly tighter enclosures of the function minimum).

• It uses more effective cut-off test and termination conditions in the
branch and bound part of the algorithm.

• It uses a new polynomial bounder based on the Bernstein form, with
the following improvements:

–A simplified vertex condition check, to find only the minimum over a
given Bernstein patch.

–A monotonicity test for discarding Bernstein patches where surely no
global minimizer can lie.

–A cut-off test for discarding Bernstein patches where surely no global
minimizer can lie.

–An improved direction-selection strategy for subdivision of Bernstein
patches.

The performance of the proposed algorithm is compared with those of
algorithms MS, TMS, and TBMS on 11 benchmark examples.
The rest of this paper is organized as follows. In Sections 2 and 3, we

give the essentials of the various inclusion forms and different interval
optimization algorithms considered in this work. In Section 4, we detail
the various algorithmic improvements, leading to the proposed algorithm
in Section 5. In Section 6, we numerically test and compare the perfor-
mance of the proposed algorithm with those of algorithms MS, TMS, and
TBMS, and discuss the obtained test results. We conclude the work in Sec-
tion 7.

2. Taylor–Bernstein Inclusion Function Forms

2.1. THE BERNSTEIN FORM

The Bernstein form has established itself as an important tool for finding
bounds on the range of multivariate polynomials (see, for instance, [7, 25]
and the references cited therein). An introduction to the Bernstein form is
given in the book [23]. The salient features of the Bernstein form approach
are:

(1) The computation of the bounds conveys the information about the
sharpness of these bounds.

(2) The approach avoids functional evaluations which might be costly if
the degree of the polynomial is high.
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(3) When bisecting a box and applying the Bernstein form to one of the
two subboxes to get an enclosure for the range over this subbox, we
obtain without any extra cost an enclosure for the range over the other
subbox.

(4) For sufficiently small boxes the Bernstein form gives the range.

In this section, we follow the notation used in Ref. [7]. Let l be the num-
ber of variables and x ¼ ðx1; . . . ; xlÞ 2 <l. A multi-index I is an ordered l-
tuple of non-negative integers I ¼ ði1; . . . ; ilÞ. For two given multi-indices I,
N, we write ION if 0 � ik � nk, k ¼ 1; . . . ; l. With I ¼ ði1; . . . ; ir�1; ir;
irþ1; . . . ; ilÞ we associate index Ir;k given by Ir;k ¼ ði1; . . . ; ir�1; ir þ k;
irþ1; . . . ; ilÞ where 0 � ir þ k � nr. Also, we write

N
I

� �
for

n1
i1

� �
. . .

nl
il

� �
:

We can expand a given multivariate polynomial into Bernstein polyno-
mials to obtain bounds for its range over an l-dimensional box X. Without
loss of generality, consider the unit box U ¼ ½0; 1�l since any nonempty box
X of <l can be mapped affinely onto this box.
Let pðxÞ be a multivariate polynomial in l-variables with real coefficients.

Denote by N ¼ ðn1; . . . ; nlÞ the tuple of maximum degrees so that nk is the
maximum degree of xk in pðxÞ for k ¼ 1; . . . ; l. Denote by S ¼ fI : I � Ng
the set containing all the tuples from <l which are ‘smaller than or equal
to’ the tuple N of maximum degrees. Then, we can write an arbitrary l-var-
iate polynomial p in the form

pðxÞ ¼
X
I2S

aIx
I; x 2 <l; ð1Þ

where for x ¼ ðx1; . . . ; xlÞ 2 <l we set xI ¼ xi11 x
i2
2 . . . xill , where aI 2 < repre-

sents the corresponding coefficient to each xI 2 <I. We refer to N as the
degree of p. The Ith Bernstein polynomial of degree N is defined as

BN
I ðxÞ ¼ Bn1

i1
ðx1Þ � � �Bnl

il
ðxlÞ; x 2 <l;

where for ij ¼ 0; . . . ; nj, j ¼ 1; . . . ; l

B
nj
ij
ðxjÞ ¼

nj
ij

� �
x
ij
j ð1� xjÞnj�ij :

The Bernstein coefficients bIðUÞ of p over the unit box U are given by

bIðUÞ ¼
X
JOI

I
J

� �

N
J

� � aJ; I 2 S:

Thus, the Bernstein form of a multivariate polynomial p is defined by

pðxÞ ¼
X
I2S

bIðUÞBN
I ðxÞ:

The Bernstein coefficients are collected in an array BðUÞ ¼ ðbIðUÞÞI2S,
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called a patch. Based on the above, an algorithm for finding a patch of
Bernstein coefficients is given in Ref. [20].
The following result describes the range enclosure property of the Bern-

stein coefficients.

LEMMA 2.1 [3]. Let p be a polynomial of degree N; and let �pðXÞ denote the
range of p on the given domain X. Then, the following property holds for a patch
BðUÞ of Bernstein coefficients:

�pðXÞ � ½min BðUÞ;max BðUÞ�:

We can find an enclosure of the range of the multivariate polynomial p on
X by transforming the polynomial into Bernstein form. Then, by Lemma
2.1, the coefficients of the expansion in the Bernstein form provide lower
and upper bounds for the range. The obtained range enclosure can be fur-
ther improved either by degree elevation of the Bernstein polynomial or by
subdivision. The subdivision strategy is generally more efficient than the
degree elevation strategy [5] and is therefore preferred.
Let D be any subbox of U generated by bisection, and suppose the patch

BðDÞ has been already computed. Further suppose D is bisected along the
rth component direction ð1OrOlÞ to produce two further subboxes DA

and DB given by

DA ¼ ½d1; �d1� � � � � � ½dr;mðdrÞ� � � � � � ½dl; �dl�;
DB ¼ ½d1; �d1� � � � � � ½mðdrÞ; �dr� � � � � � ½dl; �dl�:

Then, the patches BðDAÞ and BðDBÞ can be obtained from BðDÞ by execut-
ing Algorithm Subdivision given in Ref. [20].
The following result gives a condition called the vertex condition, which

can be used to verify if the enclosure given by the Bernstein coefficients is
the range.

LEMMA 2.2 [3]. Let p be a polynomial of degree N: Let BðUÞ be a patch on U:
Then;

�pðUÞ ¼ ½min BðUÞ;max BðUÞ�
, min BðUÞ resp: max BðUÞ occurs at some I 2 S0;

where S0 is a special subset of the index set S defined by

S0 ¼ f0; n1g � � � � � f0; nlg:

The above vertex condition also holds for any subbox D � U (see [15]).
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The vertex condition is said to be satisfied within a given machine preci-
sion l, if

min
S0

BðUÞ �min BðUÞ � l and max BðUÞ �max
S0

BðUÞ � l:

By repeated subdivision, the bounds for the range of the given polynomial
over a box can be improved until they are accurate to the given machine
precision, i.e., till for every subdivision the vertex condition is satisfied
within machine precision. The proof of this statement readily follows from
the results in Ref. [15]. Note that the application of the vertex condition
often considerably speeds up the process over the one involving just subdi-
vision, because any subdivision on which the vertex condition is satisfied
within machine precision need not be further subdivided. Further speed-
ups can be obtained by using additional pruning criteria (cf. [15]).
This leads to the following algorithm for computing the range1 �pðXÞ of

polynomial p on X [20].

2:2:1: Bounder Algorithm. �pðXÞ ¼ BounderðX; aIÞ

Inputs: A box X, a polynomial p as in (1) of degree N in l-variables and
having coefficients aI.
Outputs: The range �pðXÞ.
BEGIN Algorithm
(1) (Compute patch BðUÞ) Execute Algorithm Patch (cf. [20])

BðUÞ ¼ PatchðX; aIÞ:

(2) (Initialize lists) Set L  fðU;BðUÞÞg, Lsol  fg.
(3) (Select item for processing) If L is empty, go to step 7. Otherwise, pick

the first item from L, denote it as ðD;BðDÞÞ, and delete the item entry
from L.

(4) (Check vertex is met within l on patch) If ðD;BðDÞÞ satisfies the vertex
condition within given machine precision l, enter the item in list Lsol

and return to previous step.
(5) (Subdivide and find new patches) Execute Algorithm Subdivision (cf.

[20])

½BðDAÞ;BðDBÞ;DA;DB� ¼ SDðD;BðDÞ; rÞ;

where, r is chosen to vary cyclically2 from 1 to l.

1Henceforth, unless otherwise specified, when we refer to the range �pðXÞ of the polynomial p on X, we

mean the computed range - i.e., an enclosure of the polynomial range i.e. accurate to the given machine

precision.
2That is, r varies starting from 1 to l, and then again from 1 to l, and so on. Besides cyclical, other

strategies for subdivision exist, and their efficiency investigated in Ref. [6].
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(6) (Add new entries to list) Enter the new items ðDA;BðDAÞÞ and
ðDB;BðDBÞÞ at end of list L, and return to step 3.

(7) (Compute the polynomial range) Compute the range �pðXÞ as the mini-
mum to maximum over all the second entries of the items present in
list Lsol.

(8) RETURN �pðXÞ.
END Algorithm

2.2. THE TAYLOR FORM

In this section, we first introduce some further notation as in Ref. [23].
Let

k ¼ fk1; . . . ; klg; jkj ¼ k1 þ � � � þ kl; k! ¼ k1! � � � kl!;

DkfðxÞ ¼ ok1þ���þkl fðxÞ
oxk1

1 � � � ox
kl
l

: ð2Þ

Let IðXÞ be the set of all boxes contained in X. Let the width of an interval
X be defined as wðXÞ ¼ max X�min X if X 2 Ið<Þ, and as
wðXÞ ¼ maxfwðX1Þ; . . . ;wðXlÞg, if X 2 Ið<lÞ. Let the midpoint of an inter-
val X be defined as mðXÞ ¼ ðmin Xþmax XÞ=2 if X 2 Ið<Þ, and as
mðXÞ ¼ fmðX1Þ; . . . ;mðXlÞg, if X 2 Ið<lÞ. Let �fðXÞ denote the range of f on
X. A function F: IðXÞ ! Ið<Þ is an inclusion function for f, if �fðYÞ � FðYÞ
for all Y 2 IðXÞ. An inclusion function F for f is said to have convergence
order a; if wðFðYÞÞ � wð �fðYÞÞ � LwðYÞa for all Y 2 IðXÞ, where L and a
are positive constants.
Let f : X! < be a function that is mþ 1 times differentiable on X.

Then, the Taylor expansion of f of order m is given as

fðxÞ ¼ fðcÞ þ
Xm
jkj¼1

DkfðcÞ
k!
ðx� cÞk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pðxÞ

þ
X
jkj¼mþ1

fðkÞðnÞ
k!
ðx� cÞmþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rðxÞ

; x 2 X;

ð3Þ
where c ¼ mðXÞ and n 2 X. We call pðxÞ the polynomial part and rðxÞ the
remainder part of the Taylor expansion.
Assume an inclusion function of ðmþ 1Þth derivative of f exists and is

bounded, and furthermore that it has the isotonicity property [23]. Then,
the corresponding Taylor form of order m, denoted by FTaylor, can be
expressed as [13]:

FTaylorðXÞ ¼ �pðXÞ þ RðXÞ ð4Þ

where �pðXÞ is the (exact) range of the polynomial part pðxÞ on X, and
RðXÞ is any inclusion for the range of the remainder part rðxÞ on X. Lin
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and Rokne [13] show that the Taylor form has convergence order mþ 1
(the proof as given in Ref. [13] is with RðXÞ as the natural inclusion func-
tion; however, the proof also holds with RðXÞ as any inclusion function).

REMARK 2.1. For obtaining the required convergence order, it is not
necessary to compute the range of the polynomial part of the Taylor form
(over a given box) exactly – it is sufficient to compute an enclosure of the
same to an accuracy of m ¼ OðwðXÞmþ1Þ. This latter accuracy can in turn
be set to the given machine precision, as rounding errors dominate for
accuracies less than the machine precision, i.e., for m < l.

2.3. THE TAYLOR–BERNSTEIN FORM OF LIN–ROKNE

The Taylor form provides an enclosure for the range of f over X with con-
vergence order mþ 1. However, it requires the computation of the range
of a multivariate polynomial �pðXÞ. Lin and Rokne [13] proposed an algo-
rithm that uses Bernstein form to find a (generally non-sharp) enclosure of
�pðXÞ, so that the resulting TB form still possesses the property of mþ 1
convergence order.
Below we give the Lin and Rokne algorithm for finding an enclosure of

the range of f on X: Note that this algorithm uses the Taylor form of order
m and Bernstein polynomials of sufficiently high degree N0 given by (6),
and that a generally non-sharp enclosure of the range of the polynomial
part p of Taylor expansion is computed and used.

2:3:1. LR Algorithm [13]. FLRðXÞ ¼ LRðX; f;mÞ

Inputs: The box X; an expression for the function f, and the order m of
Taylor form to be used.
Output: An enclosure FLRðXÞ of the range of f on X.

(1) For the given function f, compute the coefficients of p in (3) and also
the remainder interval RðXÞ. This may be done automatically on a
computer equipped with interval arithmetic using Moore’s recursive
technique for Taylor coefficients computation (see [16, 17]).

(2) Relate the obtained Taylor coefficients to those of the power form in
(1), and denote the coefficients in this form as aI.

(3) Compute the l-tuple of indices D given by

D ¼ ðd1; . . . ; dlÞ; d1; . . . ; dl �
1

wðXÞ

� �mþ1
; ð5Þ

and then the l-tuple of indices N0 given by

N0 ¼ ðn01; . . . ; n0lÞ; n0k ¼ maxfnk; dkg; k ¼ 1; . . . ; l; ð6Þ

and construct S0 ¼ fI : I � N0g.

42 P.S.V. NATARAJ AND K. KOTECHA



(4) Find a patch BðUÞ of Bernstein coefficients of p on U by executing
Algorithm Patch: BðUÞ ¼ PatchðX; aIÞ with S0 used in place of S in this
algorithm. Then, compute an enclosure for the range of �pðXÞ as
B	 ¼ ½min BðUÞ;max BðUÞ�: ð7Þ

(5) Compute an enclosure for the range of f over X as

FLRðXÞ ¼ B	 þ RðXÞ: ð8Þ

(6) RETURN FLRðXÞ.
END Algorithm

2.4. IMPROVED TAYLOR–BERNSTEIN FORM

As seen from (5), D becomes large quite quickly as wðXÞ becomes smaller,
leading to high degrees N0 
 N of the Bernstein polynomials in (6). As a
consequence, the Bernstein step of LR algorithm becomes very computa-
tionally intensive as the domain intervals shrink in widths.
Algorithm TB in Ref. [20] uses a different Bernstein step based on Bern-

stein polynomials of degree N (note that N is the minimum degree of Bern-
stein polynomials we can possibly use) and is equipped with the tools of
subdivision and vertex condition checks. Further, in step (1) of this algo-
rithm, the Taylor model technique of Berz et al. [2, 14] is used for comput-
ing the Taylor coefficients in parallel with the remainder interval. Berz
et al. have shown that the Taylor model technique is more computationally
efficient and gives tighter results than a direct implementation of Moore’s
recursive techniques.
Algorithm TB computes an enclosure for the range of f on X using the

Taylor form of order m and Bernstein polynomials of degree N. The range
of polynomial part of Taylor expansion is computed in this algorithm
using Bernstein subdivision, and a vertex condition check is done on every
subdivision.

2:4:1: TB Algorithm. FTBðXÞ ¼ TBðX; f;mÞ

Inputs: The box X, an expression for the function f, and the order m of
Taylor form to be used.
Output: An enclosure FTBðXÞ of the range of f on X.
(1) For the given function f, compute Taylor coefficients of p in (3) in par-

allel with the remainder interval RðXÞ using the Taylor model tech-
nique of Berz et al. [2].

(2) Relate the obtained Taylor coefficients to those of the power form in
(1), and denote the coefficients in this form as aI.

(3) Find the range �pðXÞ on X using Algorithm Bounder:
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�pðXÞ ¼ BounderðX; aIÞ: ð9Þ

(4) Using RðXÞ obtained in step (1) and �pðXÞ obtained in step (3), compute
an enclosure for the range of f over X as

FTBðXÞ ¼ �pðXÞ þ RðXÞ: ð10Þ

(5) RETURN FTBðXÞ.
END Algorithm
It is trivial to show that the TB form computed in the proposed algo-

rithm also has the property of mþ 1 convergence order.

2.5. COMBINED TAYLOR–BERNSTEIN FORM

Typically, the FTB form requires excessive subdivisions for ‘large’ wðXÞ,
whereas the FLR form requires excessively high degrees of Bernstein form
for ‘small’ wðXÞ. It may be advantageous to have a new inclusion form
that switches between these two forms depending on the domain widths,
i.e., behave as FLR for ‘large’ domain widths, and as FTB for ‘small’ domain
widths.
Let D be as in (5) and recall that N is the tuple of maximum degrees of

x in pðxÞ given by (1). The basic idea of the combined form is as follows.
From (5) and (6),

� for ‘large’ wðXÞ, D� N, so N0 ¼ N. Therefore, for such domain widths,
it would be simpler and more efficient to use FLR based on a Bernstein
form of degree N, rather than FTB that involves successive subdivisions
till the vertex property is satisfied on every subdivision.
� for ‘small’ wðXÞ, D
 N, so N0 
 N. Therefore, for such domain widths,
it would be more efficient to use FTB based on Bernstein form of degree
N, rather than FLR that involves Bernstein form of high to very high
degree.

Therefore, if N � D, we invoke LR algorithm given in Section 2.3 except
that S is used in place of S0. That is, we compute a non-sharp enclosure of
the exact range of the polynomial part of Taylor expansion using Bernstein
polynomials of degree N. Otherwise, we invoke TB algorithm given in Sec-
tion 2.4, i.e., we compute the exact range of polynomial part of Taylor
expansion using subdivision and a vertex condition check on every subdivi-
sion. The combined algorithm is called as CTB algorithm and the resulting
form as the combined TB form, denoted FCTB.
As FCTB uses either of the existing TB forms FLR or FTB to enclose the

function range for any given domain width, and since FLR and FTB have
the ðmþ 1Þth convergence order property, it follows that FCTB also has the
ðmþ 1Þth convergence order property.
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Algorithm CTB in [21] computes such a combined TB form.

2:5:1: CTB Algorithm. ½FCTBðXÞ; �pðXÞ;B	;RðXÞ; if� ¼ CTBðX; f;mÞ

Inputs: The box X, an expression for the function f, and the order m of
Taylor form to be used.
Output: Enclosure FCTBðXÞ of the range of f on X, the range �pðXÞ of the
polynomial part of the Taylor form of f, an enclosure B	 of the same, an
enclosure RðXÞ of the remainder part of the Taylor form, and a flag if that
takes the value zero (resp. unity) depending on whether FLR (resp. FTB)
form is used in the algorithm.
Note: Depending on whether FLR (resp. FTB) is used, the quantity �pðXÞ
(resp. B	) is set to the empty interval.

(1) For the given function f, compute Taylor coefficients of p in (3) in par-
allel with the remainder interval RðXÞ, using the Taylor model tech-
nique of Berz et al. [2].

(2) Relate the obtained Taylor coefficients to those of the power form in
(1), and denote the coefficients in this form as aI.
(3) Compute the l-tuple of indices D given by

D ¼ ðd1; . . . ; dlÞ; d1; . . . ; dl �
1

wðXÞ

� �mþ1
:

If NPD then go to the following step, else go to step (8).

(4) Set flag if ¼ 0 and �p ðXÞ to the empty interval.
(5) Find a patch BðUÞ of Bernstein coefficients of p on U by executing

Algorithm Patch in [20]:

BðUÞ ¼ PatchðX; aIÞ;
then compute an enclosure B	 for the range of �pðXÞ as
B	 ¼ ½min BðUÞ;max BðUÞ�:

(6) Compute an enclosure for the range of f over X as

FCTBðXÞ ¼ B	 þ RðXÞ:
(7) Go to step (11).
(8) Set flag if ¼ 1 and B	 to the empty interval.
(9) Compute the range �pðXÞ using Algorithm Bounder:

�pðXÞ ¼ BounderðX; aIÞ:
(10) Using RðXÞ obtained in step (1) and �pðXÞ obtained in above step,

compute an enclosure for the range of f over X as

FCTBðXÞ ¼ �pðXÞ þ RðXÞ:
(11) RETURN FCTBðXÞ, �pðXÞ, B	, RðXÞ, if and EXIT.
END Algorithm
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3. Interval Global Optimization using Taylor–Bernstein Inclusion Functions

3.1. MS ALGORITHM

We first outline the well-known Moore–Skelboe (MS) algorithm of interval
analysis. Actually, the algorithm is the MS algorithm augmented with the
monotonicity test and the cut-off test of Ichida and Fujii [10]. However,
for convenience we refer to it as just the MS algorithm.

3:1:1: MS Algorithm for Global Optimization [24]

Inputs: The box X, natural inclusion functions [17] F and F0 for the func-
tion f and its Jacobian, respectively, and an accuracy parameter e.
Output: A lower bound, of accuracy e, on the global minimum of f over X.
This lower bound is output as the value of variable y in the last but one
step below.
BEGIN Algorithm
(1) Set Y ¼ X.
(2) Calculate FðYÞ.
(3) Set y ¼ min FðYÞ.
(4) Initialize the list L ¼ ððY; yÞÞ and the cut-off value z ¼ max FðYÞ.
(5) Choose a coordinate direction k parallel to which Y has an edge of

maximum length,3 i.e., choose k as

k ¼ fi : wðYÞ ¼ wðYiÞg:

(6) Bisect Y in direction k getting boxes V1 and V2 such that Y ¼ V1
S
V2.

(7) Monotonicity test (see Remark 3.1): discard any box Vi if 0 j2F0jðViÞ for
any j 2 f1; 2; . . . ; lg and i ¼ 1; 2.

(8) Calculate FðV1Þ and FðV2Þ.
(9) Set vi ¼ min FðViÞ for i ¼ 1; 2.
(10) Update the cut-off value z as

z ¼ min z;max FðV1Þ;max FðV2Þ
� �

:

(11) Remove ðY; yÞ from the list L.
(12) Add the pairs ðV1; v1Þ; ðV2; v2Þ to the list L such that the second mem-

bers of all pairs of the list do not decrease.
(13) Cut-off test: discard from the list all pairs whose second members are

greater than z.
(14) Denote the first pair of the list by ðY; yÞ.
(15) If the width of FðYÞ is less than e, then print y and EXIT algorithm.

3For other bisection strategies that have often been found more efficient (see, for instance [4]). The

same remark also holds for the bisection step in TMS and TBMS algorithms described in the sequel.
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(16) Go to step (5).
END Algorithm
The first pair ðY; yÞ of the list in each algorithmic iteration is called the

leading pair, and Y the leading box.

REMARK 3.1. In the monotonicity test if 0 j2F0jðViÞ then the interior of Vi

cannot contain a global minimizer. The edge of Vi still can contain global
minimizer if that part of the edge which has the smallest function values is
also part of the edge of X. Otherwise, no global minimizer lies in Vi. For
details, see [24].

3.2. TAYLOR MOORE – SKELBOE (TMS) ALGORITHM

In this algorithm, we simply use the Taylor model of Berz et al. [2] as an
inclusion function form for the objective function f in MS algorithm. As
this involves using Taylor model in the Moore–Skelboe algorithm, we call
it as TMS algorithm. TMS algorithm is not new in the literature, and has
been proposed and investigated, for instance, in Ref. [12].

3.3. TAYLOR–BERNSTEIN MOORE–SKELBOE (TBMS) ALGORITHM

TBMS algorithm in Ref. [20] involves the following modifications to MS
algorithm:
(1) The TB form FTB is used as an inclusion function form for f. Using this

form, an enclosure of the range of f over a given box can be obtained
using TB algorithm.

(2) The cut-off value is now defined as z ¼ min �pðYÞ þmax RðYÞ.
(3) The termination criterion is modified, based on the width of the

remainder interval RðYÞ.

3:3:1: TBMS Algorithm [20]

Inputs: The box X, order m of the Taylor form to be used, natural inclu-
sion function F0 for the Jacobian of the function f, and an accuracy param-
eter e.
Output: A lower bound, of accuracy e, on the global minimum of f over X.
This lower bound is output as the value of variable y in the last but one
step below.
BEGIN Algorithm
(1) Set Y ¼ X.
(2) Calculate FTBðYÞ using TB algorithm: ½FTBðYÞ; �pðYÞ;RðYÞ� ¼

TBðY; f;mÞ
(3) Set y ¼ min FTBðYÞ.
(4) Initialize the list L ¼ ððY; yÞÞ and the cut-off value z as

z ¼ min �pðYÞ þmax RðYÞ:
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(5) Choose a coordinate direction k parallel to which Y has an edge of
maximum length, i.e., choose k as

k ¼ i : wðYÞ ¼ wðYiÞf g:
(6) Bisect Y in direction k getting boxes V1 and V2 such that Y ¼ V1

S
V2.

(7) Monotonicity test (see Remark 3.1): discard any box Vi if 0 j2F0jðViÞ for
any j 2 f1; 2; . . . ; lg and i ¼ 1; 2.

(8) Calculate FTBðV1Þ and FTBðV2Þ using TB algorithm.
(9) Set vi ¼ min FðViÞ for i ¼ 1; 2.
(10) Update the cut-off value z as

z ¼ min z;min �pðV1Þ þmax RðV1Þ;min �pðV2Þ þmax RðV2Þ
� �

:

(11) Remove Y; yð Þ from the list L.
(12) Add the pairs ðV1; v1Þ; ðV2; v2Þ to the list L such that the second mem-

bers of all pairs of the list do not decrease.
(13) Cut-off test: discard from the list all pairs whose second members are

greater than z.
(14) Denote the first pair of the list by ðY; yÞ.
(15) If the width of RðYÞ is less than e, then print y and EXIT algorithm.
(16) Go to step (5).
END Algorithm
The convergence properties of TMS algorithm as well as that of TBMS

algorithm follow immediately from the convergence results for inclusion
functions of higher-order in the MS algorithm, as given by Moore and
Ratschek [18] and Ratschek [22].

4. Proposed Improvements

Bounder algorithm in Section 2.1 computes the range �pðXÞ of the polyno-
mial part p on X. For global optimization problems, where the computa-
tion of min �fðXÞ is of interest, this algorithm can be tailored and improved
as given below. We call the resulting improved algorithm as NewBounder
algorithm.
A study of the optimization TBMS algorithm presented in Section 3.3

reveals that the quantity max �pðYÞ, where Y is the current leading box, is
never used in the algorithm and is therefore not of interest. Note that the
quantity max �pðYÞ required in step (8) of TBMS algorithm is actually
found in step (4) of Bounder algorithm, through the application of the ver-
tex condition to max BðDÞ.
Since max �pðYÞ is not of interest in TBMS algorithm, in step (4) of

Bounder algorithm we may avoid applying the vertex condition to
max BðDÞ and instead apply it only to min BðDÞ. With this modification, a
new NewBounder algorithm arises from Bounder algorithm. It computes
an enclosure PðXÞ of the range �pðXÞ, with PðXÞ such that
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min PðXÞ ¼ min �pðXÞ; max PðXÞ � min �pðXÞ: ð11Þ
We can also incorporate additional improvements into NewBounder algo-
rithm:

� A monotonicity test similar to that used in the MS algorithm, for dis-
carding boxes where surely no global minimizer of p lies.
� A cut-off test, similar to that used in the MS algorithm, for discarding
boxes where surely no global minimizer of p lies.
� An improved strategy for selection of subdivision direction of boxes.

We discuss below each of these improvements and then present NewBoun-
der algorithm.

4.1. MONOTONICITY TEST FOR BERNSTEIN PATCHES

On a box D � U, the partial derivative with respect to xr of a polynomial
pðxÞ in Bernstein form is [7]

op

oxr
ðxÞ ¼ nr

X
IONr;�1

½bIr;1ðDÞ � bIðDÞ�BNr;�1;IðxÞ; 1OrOl; x 2 D: ð12Þ

REMARK 4.1. Let P0rðDÞ denote an enclosure of the range of the above
partial derivative on D. In the monotonicity test if 0 j2P0rðDÞ then the inte-
rior of D cannot contain a global minimizer of p on U. The edge of D can
still contain global minimizer if that part of the edge which has the small-
est polynomial value is also part of U. Otherwise, no global minimizer of p
lies in D, and D can be discarded.

The enclosure P0rðDÞ can be found by evaluating the natural interval
inclusion of the right-hand side of the expression in (12). However, in some
cases, the evaluation can be avoided.

REMARK 4.2. From the fact that the Bernstein polynomials BNr;�1;I are
always non-negative, it is easy to see from (12) that if all ½bIr;1ðDÞ � bIðDÞ�
are positive (resp. negative), then P0rðDÞ > 0 (resp. P0rðDÞ < 0) p) is mono-
tonic with respect to direction r on box D) the interior of D cannot con-
tain global minimizer of p.

4.2. DIRECTION SELECTION FOR BERNSTEIN PATCHES

In step (5) of Bounder algorithm in Section 2.1, the direction in which the
boxes are subdivided is varied cyclically from 1 to l. A more efficient strat-
egy for selection of the subdivision direction could result in considerably
fewer boxes being created and significant overall speed up of this algorithm.
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Zettler and Garloff [25] suggest selection of the subdivision direction as
the one along which the maximum absolute value of the partial derivatives
of p occurs. Applying the triangle inequality and properties of Bernstein
polynomials to (12), the authors show that the quantity

max
xsD

op

oxr
ðxÞ

����
����

can be estimated as

eIr ¼ max
IONr;�1

jbIr;1ðDÞ � bIðDÞj:

The direction selected for subdivision r0 is such that

eIr0 ¼ max
1OrOl

eIr: ð13Þ

A similar strategy can be given based on the second partial derivatives. In
NewBounder algorithm, we use the above direction-selection strategy based
on the first partial derivatives.

4.3. CUT-OFF TEST FOR BERNSTEIN PATCHES

The list L in Bounder algorithm consists of pairs ðD;BðDÞÞ. Suppose we
arrange this list at every iteration such that the minimums of the second
members, i.e., min BðDÞ, of all pairs of the list do not decrease.
Now, consider the leading box D of the list L at any given iteration of

the algorithm. If min BðDÞ satisfies the vertex condition, then by the range
enclosure property of Bernstein coefficients, min �pðDÞ ¼ min BðDÞ. As
min �pðDÞPmin �pðXÞ, we may discard all boxes D0 in the list L for which
min BðD0Þ > min BðDÞ.
Suppose instead that min BðDÞ does not satisfy the vertex condition.

Then, D is subdivided into two subboxes DA, DB and the patches BðDAÞ,
BðDBÞ computed. By the range enclosure property of Bernstein coefficients
given in Section 2.1,

�pðDAÞ � ½min BðDAÞ;max BðDAÞ�; �pðDBÞ � ½min BðDBÞ;max BðDBÞ�:

So, if min BðDBÞ > max BðDAÞ then the box DB can be discarded in the
search for the global minimum. In fact, we may also discard all other
boxes D0 in the list L for which min BðD0Þ > max BðDAÞ.

4.4. ALGORITHM FOR BOUNDING POLYNOMIAL RANGE

We are now ready to present the improved NewBounder algorithm. This
algorithm is specially meant for global optimization problems where the
primary interest is in obtaining sharp values for min �pðXÞ whereas the
quantity max �pðXÞ can be overestimated.
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4:4:1: NewBounder Algorithm. PðXÞ ¼ NewBounderðX; aIÞ

Inputs: A box X, a polynomial p as in (1) of degree N in l-variables and
having coefficients aI.
Output: An enclosure PðXÞ of the range �pðXÞ, where PðXÞ is as in (11).
BEGIN Algorithm
(1) (Compute patch BðUÞ) Execute Patch algorithm

BðUÞ ¼ PatchðX; aIÞ:
(2) (Initialize lists) Set L  fðU;BðUÞÞg, Lsol  fg. Set cut-off value

z0 ¼ max BðUÞ.
(3) (Select item for processing) If L is empty, go to step (11). Otherwise,

pick the first item from L, denote it as ðD;BðDÞÞ, and delete the item
entry from L.

(4) (Check if vertex condition for the min on patch is met within l) If
ðD;BðDÞÞ is such that minBðDÞ satisfies the vertex condition within the
given machine precision l then
(a) Update the cut-off value as z0 ¼ minfz0;min BðDÞg.
(b) Enter the item in list Lsol and return to previous step.

(5) (Subdivide and find new patches) Execute Subdivision algorithm

BðDAÞ;BðDBÞ;DA;DB½ � ¼ SDðD;BðDÞ; r0Þ;
where, r0 is chosen as in (13).

(6) (Monotonicity test, see Remarks 4.1 and 4.2): discard box DA if
0 j2P0rðDAÞ for any r 2 f1; 2; . . . ; lg. Do likewise for box DB.

(7) Update the cut-off value as z0 ¼ minfz0;max BðDAÞ;max BðDBÞg.
(8) (Add new entries to list) Enter the new items ðDA;BðDAÞÞ and
ðDB;BðDBÞÞ to the list L such that minimums of the second members,
i.e., min BðDÞ, of all pairs of the list do not decrease.

(9) Cut-off test: discard from the list all pairs whose minimums of the sec-
ond members are greater than z0.

(10) Return to step (3).
(11) Compute an enclosure PðXÞ of the range �pðXÞ as the minimum to

maximum over all the second entries of the items present in list Lsol.
(12) RETURN PðXÞ.
END Algorithm

4.5. A TIGHTER ENCLOSURE OF THE FUNCTION MINIMUM

In the proposed algorithm for optimization given below, we are interested
in computing an enclosure that is as tight as possible for the global mini-
mum of the objective function f. This quantity is given by min �fðYÞ, where
Y is the leading box at any given iteration of the algorithm. Suppose
we compute the combined TB form using CTB algorithm and obtain an
enclosure of �fðYÞ. If wðYÞ happens to be small enough, then the improved
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TB form FTBðYÞ is in turn invoked in CTB algorithm. In this case, we can
use the interval

min �pðYÞ þmin RðYÞ;min �pðYÞ þmax RðYÞ½ �

instead of the interval FCTBðYÞ to get a tighter enclosure of min �fðYÞ.
MIN_CTB algorithm encapsulates this idea.

4:5:1: MIN_CTB Algorithm. Fmin;CTBðXÞ ¼ MIN CTBðX; f;mÞ

Inputs: The box X, an expression for the function f, and the order m of
Taylor form to be used.
Output: An enclosure Fmin;CTBðXÞ for min �fðXÞ.
BEGIN Algorithm
(1) Call CTB algorithm:

½FCTBðXÞ; �pðXÞ;B	;RðXÞ; if� ¼ CTBðX; f;mÞ:
(2) If if ¼ 0 set

Fmin;CTBðXÞ ¼ FCTBðXÞ
else set
Fmin;CTBðXÞ ¼ ½min �pðXÞ þmin RðXÞ;min �pðXÞ þmax RðXÞ�:

(3) RETURN Fmin;CTBðXÞ and EXIT.
END Algorithm

5. A New Optimization Algorithm

We next propose an optimization algorithm based on the following ideas.
As before, let Y be the leading box at any given iteration of the MS algo-
rithm. Then,
(1) Since the computation of FNIEðYÞ is relatively inexpensive, and since

FNIEðYÞ sometimes gives sharper enclosures than the sophisticated TB
forms even for small domains, we always compute FNIEðYÞ.

(2) If wðRðYÞÞ > wðFNIEðYÞÞ, then FNIEðYÞ gives a sharper enclosure of the
range than the TB forms. Since the effort to bound the polynomial
range �pðYÞ may not be worthwhile in these cases, we do not use the
TB forms and instead use FNIEðYÞ.

(3) If the Taylor model technique of Berz et al. [2, 14] is used for comput-
ing RðYÞ needed in the above step, then we concurrently also obtain
the Taylor model FTMðYÞ. Then, as anyway the cost of computing
FTMðYÞ is incurred in the Taylor model technique, instead of using only
FNIEðYÞ we can use FNIEðYÞ

T
FTMðYÞ.

(4) If wðRðYÞÞOwðFNIEðYÞÞ, we also use the combined TB form and get an
enclosure of the global minimum min �fðYÞ using Fmin;CTBðYÞ. We then
intersect the result with FNIEðYÞ

T
FTMðYÞ to obtain a (hopefully) shar-

per enclosure FðYÞ of the global minimum min �fðYÞ.
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(5) A lower bound on the global minimum min �fðYÞ is obtained as
y ¼ min FðYÞ.

(6) The global minimum min �fðYÞ cannot exceed max FðYÞ. Hence, the
cut-off value z in the MS algorithm can be updated accordingly.

(7) Thus, the global minimum min �fðYÞ is bounded by ½min FðYÞ;
max FðYÞ�. The maximum possible error in computing the global mini-
mum is therefore given by wðFðYÞÞ.

(8) This leads to the termination condition for the algorithm as
wðFðYÞÞ < e.

We can now present our algorithm for global optimization. Since our
global optimization algorithm involves the Combined Taylor–Bernstein
form in Moore–Skelboe type algorithm, we call it as CTBMS algorithm.

4:5:2: CTBMS Algorithm

Inputs: The box X, order m of the Taylor form to be used, natural inclu-
sion function FNIE for the function f : X! <, an inclusion function F0 for
the Jacobian of f, and an accuracy parameter e.
Output: A lower bound, of accuracy e, on the global minimum of f over X.
This lower bound is output as the value of variable y in the last but one
step below.
BEGIN Algorithm
(1) Set Y ¼ X.
(2) Calculate FNIEðYÞ and FTMðYÞ ¼ pðYÞ þ RðYÞ.

(a) If wðRðYÞÞ > wðFNIEðYÞÞ, set
FðYÞ ¼ FNIEðYÞ

\
FTMðYÞ;

and go to the following step, else compute Fmin;CTBðYÞ using MIN_CTB
algorithm

Fmin;CTBðYÞ ¼ MIN CTBðY; f;mÞ;
and set

FðYÞ ¼ FNIEðYÞ
\

FTMðYÞ
\

Fmin;CTBðYÞ:
(3) Set y ¼ min FðYÞ.
(4) Initialize the list L ¼ ððY; yÞÞ and the cut-off value z ¼ max FðYÞ.
(5) Choose a coordinate direction k parallel to which Y has an edge of

maximum length, i.e., choose k as

k ¼ fi : wðYÞ ¼ wðYiÞg:
(6) Bisect Y in direction k getting boxes V1 and V2 such that Y ¼ V1

S
V2.

(7) Monotonicity test (see Remark 3.1): discard any box Vi if 0 j2F0jðViÞ for
any j 2 f1; 2; . . . ; lg and i ¼ 1; 2.

(8) For i ¼ 1; 2 do the following: Calculate FNIEðViÞ and FTMðViÞ ¼
pðViÞ þ RðViÞ.
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(a) If wðRðViÞÞ > wðFNIEðViÞÞ, set
FðViÞ ¼ FNIEðViÞ

\
FTMðViÞ

else compute Fmin;CTBðViÞ using MIN_CTB algorithm:

Fmin;CTBðViÞ ¼ MIN CTBðVi; f;mÞ;
and set

FðViÞ ¼ FNIEðViÞ
\

FTMðViÞ
\

Fmin;CTBðViÞ:
(9) Set vi ¼ min FðViÞ for i ¼ 1; 2.
(10) Update the cut-off value z as

z ¼ minfz;max FðV1Þ;max FðV2Þg:
(11) Remove ðY; yÞ from the list L.
(12) Add the pairs ðV1; v1Þ; ðV2; v2Þ to the list L such that the second mem-

bers of all pairs of the list do not decrease.
(13) Cut-off test: discard from the list all pairs whose second members are

greater than z.
(14) Denote the first pair of the list by ðY; yÞ.
(15) If wðFðYÞÞ < e then print y and EXIT algorithm.
(16) Go to step (5).
END Algorithm
From [20, Section 4.2], it is straightforward to prove that y is a lower

bound on the global minimum of f over X. Further, the convergence prop-
erties of CTBMS algorithm follows immediately from the convergence
results for inclusion functions of higher-order in the MS algorithm, as
given by Moore and Ratschek in [18] and Ratschek [22].

6. Numerical Tests

We test and compare the performances of CTBMS, TBMS, TMS, and MS
algorithms on 11 benchmark examples. We set the accuracy e ¼ 1e� 05
and the Taylor order m ¼ 4. For all computations, we use a PC/Pentium
III 800 MHz 256 MB RAM machine with a FORTRAN 90 compiler, and
version 8.1 of the COSY-INFINITY package of Berz et al. [1, 9].
To compare the performances of the various algorithms, we use the fol-

lowing performance metrics:

� Number of algorithmic iterations;
� Computational time (seconds);
� Maximum list length;
� Final list length.
The examples are as given below.

EXAMPLE 6.1. Jennrich and Sampson function [19, Problem 6]. The 2-dim
function is
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fðxÞ ¼
X10
i¼1

fiðxÞ2; fiðxÞ ¼ 2þ 2i� ðexpðix1Þ þ expðix2ÞÞ:

We take the initial domain as X ¼ ð½�1; 1�2Þ.

EXAMPLE 6.2. Bard function [19, Problem 8]. The 3-dim function is

fðxÞ ¼
X15
i¼1

fiðxÞ2; fiðxÞ ¼ yi � x1 þ
ui

vix2 þ wix3

� �
;

ui ¼ i; vi ¼ 16� i; wi ¼ minðui; viÞ;
where, the values of yi for i ¼ 1; . . . ; 15 are given in the cited paper. We
take the initial domain as X ¼ ð½�0:25; 0:25�; ½0:01; 2:5�2Þ.

EXAMPLE 6.3. Box 3-dim function [19, Problem 12]. The function is

fðxÞ ¼
X10
i¼1

fiðxÞ2; fiðxÞ ¼ expð�tix1Þ � expð�tix2Þ

� x3½expð�tiÞ � expð�10tiÞ�; ti ¼
i

10
:

We take the initial domain as X ¼ ð½�20; 20�; ½1; 20�2Þ.

EXAMPLE 6.4. Brown and Dennis function [19, Problem 16]. The 4-dim
function is

fðxÞ ¼
X20
i¼1

fiðxÞ2; fiðxÞ ¼ ðx1 þ tix2 � expðtiÞÞ2

þ ðx3 þ x4 sinðtiÞ � cosðtiÞÞ2; ti ¼
i

5
:

We take the initial domain as X ¼ ð½�10; 0;�100;�20�; ½100; 15; 0; 0:2�Þ.

EXAMPLE 6.5. Variably dimensioned function [19, Problem 25]. The 2-dim
function is

fðxÞ ¼
X4
i¼1

fiðxÞ2; f1ðxÞ ¼ x1 � 1; f2ðxÞ ¼ x2 � 1;

f3ðxÞ ¼
X2
j¼1

jðxj � 1Þ; f4ðxÞ ¼
X2
j¼1

jðxj � 1Þ
 !2

:

We take the initial domain as X ¼ ð½�1:5; 1:5�2Þ.

EXAMPLE 6.6. Linear – rank 1 with zero columns and rows [19, Problem
34]. The 2-dim function is
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fðxÞ ¼
X4
i¼1

fiðxÞ2; f1ðxÞ ¼ �1; f2ðxÞ ¼ ð2x1 þ 3x2Þ � 1;

f3ðxÞ ¼ 2ð2x1 þ 3x2Þ � 1; f4ðxÞ ¼ �1:

We take the initial domain as X ¼ ð½�10; 10�2Þ.

EXAMPLE 6.7. Linear function – full rank [19, Problem 32]. The 4-dim
function is

fðxÞ ¼
X4
i¼1

fiðxÞ2; fiðxÞ ¼ xi �
1

2

X4
j¼1

xj

 !
� 1:

We take the initial domain as X ¼ ð½�1; 1�4Þ.

EXAMPLE 6.8. Extended Rosenbrock function [19, Problem 21]. The 2-dim
function is

fðxÞ ¼
X2
i¼1

fiðxÞ2; f1ðxÞ ¼ 10ðx2 � x21Þ; f2ðxÞ ¼ 1� x1:

We take the initial domain as X ¼ ð½�12; 12�2Þ.

EXAMPLE 6.9. Discrete boundary value function [19, Problem 28]. The 2-
dim function is

fðxÞ ¼
X2
i¼1

fiðxÞ2; fiðxÞ ¼ 2xi � xi�1 � xiþ1 þ
h2ðxi þ ti þ 1Þ3

2
;

h ¼ 1

3
; ti ¼ ih; x0 ¼ x3 ¼ 0:

We take the initial domain as X ¼ ð½�5; 5�2Þ.

Table 1. Domains used, dimensions and the global minimum over the given domain

Ex. Test function Dim Domain Global minimum

6.1 Jennrich and Sampson 2 [)1,1]2 124.36217…
6.2 Bard 3 [)0.25,0.25] [0.01,2.5]2 8.213…E)3
6.3 Box 3-dim 3 [)20,20][1,20]2 0.00000…
6.4 Brown and Dennis 4 [)10,100][0,15][)100,0] [)20,0.2] 88860.47976…
6.5 Variably dim. 2 [)1.5,1.5]2 0.00000…
6.6 Linear–rank1 2 [)10,10]2 2.19999…
6.7 Linear–full rank 4 [)1,1]4 0.00000…
6.8 Extended Rosenbrock 2 [)12,12]2 0.00000…
6.9 Discrete boundary 2 [)5,5]2 0.00000…
6.10 Brown almost–linear 4 [)2.5,2.5]4 0.00000…
6.11 Chebyquad 4 [)2,2]4 0.00000…
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EXAMPLE 6.10. Brown almost – linear function [19, Problem 27]. The 4-
dim function is

fðxÞ ¼
X4
i¼1

fiðxÞ2; fiðxÞ ¼ xi þ
X4
j¼1

xj � 5;

i ¼ 1; . . . ; 3; f4ðxÞ ¼
Y4
j¼1

xj

 !
� 1:

We take the initial domain as X ¼ ð½�2:5; 2:5�4Þ.

Table 2. Comparison of number of iterations required by various algorithms

Ex. Test Function Dim Iterations MS TMS TBMS CTBMS

6.1 Jennrich 2 Number 1961 427 65 60

and Ratio – 4.59 30.17 32.68

Sampson % Reduction – 78.23 96.69 96.94

6.2 Bard 3 Number * * 202 46

Ratio – – – –

% Reduction – – – –

6.3 Box 3-dim 3 Number 1208 * 451 105

Ratio – – 2.68 11.5

% Reduction – – 62.67 91.31

6.4 Brown 4 Number * 455 66 3

And Ratio – – – –

Dennis % Reduction – – – –

6.5 Variably 2 Number 23 151 3 5

Dimensioned Ratio – 0.15 7.67 4.6

% Reduction – )556.52 86.96 78.26

6.6 Linear 2 Number * * 133 134

– rank 1 Ratio – – – –

% Reduction – – – –

6.7 Linear 4 Number 4757 * 166 122

– full rank Ratio – – 28.66 38.99

% Reduction – – 96.51 97.44

6.8 Extended 2 Number 86 2906 82 24

Rosenbrock Ratio – 0.03 1.05 3.58

% Reduction – )327.91 4.65 72.09

6.9 Discrete 2 Number 69 133 20 19

Boundary Ratio – 0.52 3.45 3.63

value % Reduction – )92.75 71.01 72.46

6.10 Brown 4 Number * * 669 331

–almost linear Ratio – – – –

% Reduction – – – –

6.11 Chebyquad 4 Number * * * 1448

Ratio – – – –

% Reduction – - – –

IMPROVED GLOBAL OPTIMIZATION ALGORITHM 57



EXAMPLE 6.11. Chebyquad function [19, Problem 35]. The 4-dim function
is

fðxÞ ¼
X4
i¼1

fiðxÞ2; fiðxÞ ¼
1

4

X4
j¼1

TiðxjÞ �
Z 1

0

TiðxÞ dx;

where Ti is the ith Chebyshev polynomial shifted to the interval ½0; 1�.
Hence,Z 1

0

TiðxÞ dx ¼
0 for i odd,
�1
ði2�1Þ for i even.

	

Table 3. Comparison of computation time required by various algorithms

Ex. Test Function Dim Time MS TMS TBMS CTBMS

6.1 Jennrich 2 Number 10.1 3.9 1.47 1.2

and Ratio – 2.59 6.87 8.42

Sampson % Reduction – 61.39 85.45 88.12

6.2 Bard 3 Number >1 h >1 h 60.1 48.2

Ratio – – – –

% Reduction – – – –

6.3 Box 3-dim 3 Number 11.1 * 28.9 4.08

Ratio – – 0.38 2.72

% Reduction – – )160.36 63.24

6.4 Brown 4 Number >1 h 5.31 7.35 2.88

and Ratio – – – –

Dennis % Reduction – – – –

6.5 Variably 2 Number 7E)2 1.9E)2 5E)2 2E)2
dimensioned Ratio – 3.68 1.4 3.5

% Reduction – 72.86 28.57 71.43

6.6 Linear 2 Number >10 h >10 h 3559.9 3011.9

– rank 1 Ratio – – – –

% Reduction – – – –

6.7 Linear 4 Number 287.3 * 59.2 46.0

– full rank Ratio – – 4.85 6.25

% Reduction – 79.39 83.99

6.8 Extended 2 Number 2E)2 10.76 1.0 0.37

Rosenbrock Ratio – 0.002 0.02 0.05

% Reduction – )5E4 )4900 )1750

6.9 Discrete 2 Number 3E)2 2E)1 3E)1 8E)2
Boundary Ratio – 0.15 0.1 0.38

value % Reduction – )566.67 )900.1 )166.67

6.10 Brown 4 Number >10 h >10 h 4914.0 3112.72

almost Ratio – – – –

linear \% Reduction – – – –

6.11 Chebyquad 4 Number >10 h >10 h >10 h 2963.6

Ratio – – – –

\% Reduction – – – –
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We take the initial domain as X ¼ ð½�2; 2�4Þ.

6.1. RESULTS AND DISCUSSION

Table 1 lists the global minimum obtained using CTBMS algorithm in each
example, whereas Tables 2–5 give the obtained results in terms of the cho-

sen performance metrics.4 For each metric, the values of ratio and the per-
cent reduction are computed as

Table 4. Comparison of maximum list length required by various algorithms

Ex. Test Function Dim Max. list length MS TMS TBMS CTBMS

6.1 Jennrich 2 Number 81 32 14 13

and Ratio – 2.53 5.79 6.23

Sampson % Reduction – 60.49 82.72 83.95

6.2 Bard 3 Number * * 38 15

Ratio – – – –

% Reduction – - – –

6.3 Box 3-dim 3 Number 295 * 94 42

Ratio – – 3.14 7.02

% Reduction – – 68.14 85.76

6.4 Brown 4 Number * 44 15 2

and Ratio – – – –

Dennis % Reduction – – – –

6.5 Variably 2 Number 7 38 1 5

Dimensioned Ratio – 0.18 7.0 1.4

% Reduction – )442.86 85.71 28.57

6.6 Linear 2 Number * * 53 53

– rank 1 Ratio – – – –

% Reduction – – – –

6.7 Linear 4 Number 1547 * 82 63

– full rank Ratio – – 18.87 24.56

% Reduction – – 94.70 95.93

6.8 Extended 2 Number 20 340 43 12

Rosenbrock Ratio – 0.06 0.47 1.67

% Reduction – )1600 )115 40

6.9 Discrete 2 Number 12 11 7 5

Boundary Ratio – 1.1 1.71 2.4

Value % Reduction – 8.33 41.67 58.34

6.10 Brown 4 Number * * 370 60

Almost Ratio – – – –

Linear % Reduction – – – –

6.11 Chebyquad 4 Number * * * 305

Ratio – – – –

% Reduction – – – –

4A starred entry in the tables indicates that a solution was not obtained with the corresponding

algorithm for the prescribed accuracy, due to excessive time and/or memory requirements.
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Ratio¼ Perf. metric with basic algorithm

Perf. metric with proposed algorithm
;

%reduction¼Perf. metric with basic algorithm�Perf. metric with proposed algorithm

Perf. metric with basic algorithm
�100:

Table 6 gives the averages of the ratio and percent reduction over all the
test examples, while Table 7 gives the ranking of the CTBMS algorithm
for the various performance metrics (a higher rank is assigned to the algo-
rithm with lesser performance metric value).
At the outset, we note that for the considered domains and accuracy,

the proposed CTBMS algorithm is able to solve all the test examples,
whereas MS, TMS, and TBMS algorithms are able to solve only 54.45,
45.45, and 90.90% of the test examples, respectively. Table 6 shows that

Table 5. Comparison of final list length required by various algorithms

Ex. Test Function Dim Final list length MS TMS TBMS CTBMS

6.1 Jennrich 2 Number 37 24 1 1

and Ratio – 1.54 37 37

Sampson % Reduction – 35.13 97.30 97.30

6.2 Bard 3 Number * * 1 3

Ratio – – – –

% Reduction – – – –

6.3 Box 3-dim 3 Number 254 * 1 15

Ratio – – 254 16.9

% Reduction – – 99.60 94.09

6.4 Brown 4 Number * 24 1 1

and Ratio – – – –

Dennis % Reduction – – – –

6.5 Variably 2 Number 5 6 1 1

dimensioned Ratio – 0.83 5 5

% Reduction – )20 80 80

6.6 Linear 2 Number * * 11 11

– rank 1 Ratio – – – –

% Reduction – – – –

6.7 Linear 4 Number 1144 * 1 1

– full rank Ratio – – 1144 1144

% Reduction – 99.91 99.91

6.8 Extended 2 Number 15 200 1 1

Rosenbrock Ratio – 0.08 15 15

% Reduction – )12.33 93.33 93.33

6.9 Discrete 2 Number 11 8 1 1

boundary Ratio – 1.38 11 11

value % Reduction – 27.27 90.90 90.90

6.10 Brown 4 Number * * 2 7

almost Ratio – – – –

linear % Reduction – – – –

6.11 Chebyquad 4 Number * * * 1

Ratio – – – –

% Reduction – – – –
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for a majority of the test problems, CTBMS algorithm gives large reduc-
tions in maximum list length, number of iterations, and final list length,
while it gives improvement in computation time for more than half the test
problems. Table 7 shows that the proposed algorithm is able to achieve the
1st rank in 81.81% of the test examples for the iterations metric, in
72.72% of the test examples for the computational time metric, in 90.90%
of the test examples for the maximum list length metric, and in 72.72% of
the test examples for the final list length metric. Overall, the proposed
algorithm is found to be the most efficient one for every performance met-
ric.

7. Conclusion

We presented a novel algorithm for global optimization that combines
the sophisticated TB forms, Taylor model, and the simple natural inclu-
sion function. The performance of the proposed algorithm was tested
and compared with those of existing MS algorithms on a collection of 11

Table 6. Minimum, mean, and maximum of ratios and reductions, with respect to MS algorithm

Ratio % Reduction

Perf. metric Alg. Min. Mean Max. Min. Mean Max.

Iterations TMS 0.03 1.32 4.59 )556.52 )224.74 78.23

TBMS 1.05 12.28 30.17 4.65 69.76 96.69

CTBMS 3.58 15.83 38.99 72.09 84.75 97.44

Computa-

tional

TMS 0.002 1.61 3.68 )5E4 )1E4 72.86

time TBMS 0.02 2.27 6.87 )4900 )961.18 85.45

CTBMS 0.05 3.55 6.25 )1750 )268.32 88.12

Maximum TMS 0.06 0.97 2.53 )1600 )493.51 60.49

list length TBMS 0.47 6.16 18.87 )115 42.99 94.70

CTBMS 1.4 7.21 24.56 28.57 65.43 95.93

Final TMS 0.08 0.96 1.54 )20 7.52 35.13

list length TBMS 5 244.34 1144 80 93.51 99.91

CTBMS 5 204.82 1144 80 92.59 99.91

Table 7. Rankings obtained by proposed CTBMS algorithm

Number of problems

Performance metric 1st Rank 2nd Rank 3rd Rank 4th Rank

Iterations 9 2 0 0

Computational time 8 3 0 0

Maximum list length 10 1 0 0

Final list length 8 3 0 0
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benchmark problems. Overall, the proposed algorithm was found to be the
most efficient one for every performance metric.
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